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Abstract. We study the dynamics of a class of two-dimensional stochastic processes, depending
on two parameters, which may be interpreted as two different temperatures respectively associated
to interfacial and to bulk noise. Special lines in the plane of parameters correspond to the Ising
model, voter model and majority vote model. The dynamics of this class of models may be
described formally in terms of reaction–diffusion processes for a set of coalescing, annihilating,
and branching random walkers. We use the freedom allowed by the space of parameters to measure,
by numerical simulations, the persistence probability of a generic model in the low-temperature
phase, where the system coarsens. This probability is found to decay at large times as a power law
with a seemingly constant exponentθ ≈ 0.22. We also discuss the connection between persistence
and the nature of the interfaces between domains.

1. Introduction

As is well known, an Ising system quenched from high temperature to low temperature exhibits
phase ordering in its temporal evolution [1, 2]. This property holds in any dimension. The voter
model [3], defined as a purely dynamical system, is identical to the Ising model with Glauber [4]
or heat bath dynamics in one dimension but its behaviour progressively departs from that of the
latter when dimension increases. For instance the two-dimensional voter model also exhibits
properties similar to phase ordering [5]†, though the way the system coarsens differs, in some
respect, from that of the two-dimensional Ising model. Measuring the persistence probability
of the two models demonstrates more strikingly the difference in behaviour between them.
While the persistence probability for the two-dimensional Ising model at zero temperature
decays ast−θ with θ ≈ 0.22 [7–9], it behaves as exp[−A ln2 t ] for the two-dimensional voter
model [10, 11].

In an attempt to understand the differences in behaviour between the dynamics of the
two-dimensional Ising and voter models, we were naturally led to introduce a whole class of
models interpolating between them. The idea stems from the observation that the rules for
updating a spin in the voter model resemble those used for the Ising model, in the Glauber
or heat-bath algorithms. This class of models is defined in any dimensiond, but this study
is restricted to two dimensions, where the models depend continuously on two parameters,
which may be interpreted as two temperatures.

† For an example of a physical situation where the voter model is relevant, see [6].
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The aim of this work is to use the freedom allowed by the space of parameters in
order to investigate the mechanisms by which phase ordering and persistence continuously
change when going from the Ising model to the voter model. We will see that physical
insight is provided by interpreting the two parameters defining the dynamics as two different
temperatures, respectively associated to interfacial and to bulk noise. We shall also investigate
whether the persistence exponentθ , which seems constant≈0.22 for the two-dimensional
Ising model when temperature varies [12–15], is a universal exponent for the whole class of
models, in the low-temperature region of the plane of parameters.

In section 2 we first focus our interest on the definition of this class of models. We then
give a qualitative description of its dynamics, showing the existence of a critical line between a
low- and a high-temperature region in the space of parameters defining the models (section 3).
Section 4 is devoted to the study of persistence in the low-temperature region. We first measure
the fraction of spins which never flipped up to timet , along the special line joining the voter
model to the zero temperature Ising model. We then discuss the question of persistence at
finite temperature (section 4). Finally an appendix is devoted to the dual description of the
models in terms of reaction–diffusion processes.

After this work was completed, we discovered that this class of models had been previously
introduced in [16], which also contains a determination of the critical line by a finite-size scaling
analysis in the stationary state. For completeness, we kept the original wording of sections 2
and 3, adding references to this work where appropriate.

2. Definition of the class of models

Let us consider a two-dimensional lattice of spinsσi = ±1, evolving with the following
dynamical rule. At each evolution step, the spin to be updated flips with the heat bath rule: the
probability that the spinσi takes the value +1 isP(σi = 1) = p(hi), where the local fieldhi
is the sum over neighbouring sites

∑
j σj and

p(h) = 1
2(1 + tanh[β(h)h]). (1)

The functionsp(h) andβ(h) are defined over integral values ofh. For a square lattice,h takes
the values 4, 2, 0,−2,−4. We require thatp(−h) = 1− p(h), in order to keep the up–down
symmetry, henceβ(−h) = β(h). Note that this fixesp(0) = 1

2. The dynamics therefore
depends on two parameters

p1 = p(2) p2 = p(4) (2)

or equivalently on two effective temperatures

T1 = 1

β(2)
T2 = 1

β(4)
. (3)

Defining the coordinate system

t1 = tanh
2

T1
t2 = tanh

2

T2
(4)

with 06 t1, t2 6 1, yields

p1 = 1
2(1 + t1) p2 = 1

2

(
1 +

2t2
1 + t22

)
(5)

with 1
2 6 p1, p2 6 1.

Hereafter we shall interpretT1 andT2 as two temperatures, respectively associated to
interfacial noise, and tobulk noise. This should be understood in the following sense. Consider
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the initial configuration where the system is divided by a flat interface into two halves, one
half with all spinsσ = 1, and the other one with all spinsσ = −1. Then, ifp1 = p2 = 1,
i.e. T1 = T2 = 0, this configuration will not evolve in time, neither in the bulk, nor on the
interface, since all spins are surrounded by at least three spins of the same value. However,
if T2 = 0, then as soon asT1 > 0, spins at the interface will flip, while those in the bulk
will not. Conversely, ifT1 = 0, then spins in the bulk will flip ifT2 > 0, while those on the
interface will not. (They will later do so because of the noise coming from the bulk.) Note that
a configuration where the system is divided into two halves by a curved interface will always
evolve, even ifp1 = p2 = 1, sincep(0) = 1

2.
Each point in the parameter plane(p1, p2), or alternatively in the temperature plane

(t1, t2), corresponds to a particular model. The class of models thus defined comprises as
special cases the Ising model, the voter and antivoter models, as well as the majority vote
model, the description of which follows.

The Ising model with heat-bath dynamics corresponds to choosing

β(h) = constant= β ∀h (6)

whereβ is the usual inverse temperature. Hence

p1 = 1
2(1 + tanh 2β) p2 = 1

2(1 + tanh 4β). (7)

This corresponds to the line

p2 = p2
1

1− 2p1 + 2p2
1

or t1 = t2 (8)

whenβ varies. For example, at zero temperature, one hasp1 = p2 = 1, henceT1 = T2 = 0.
The dynamics is therefore only driven by the curvature of the interfaces between domains of
equal values of the spin [2]. While the Ising model possesses a well-defined energy for which
the heat-bath dynamics satisfies detailed balance, none of the models outside the Ising line
shares these properties [16]. Hence the usual statistical mechanics equilibrium description
does not apply for these models, which have a purely dynamical definition.

The dynamics of the voter model is defined as follows [3]. At each time step, the spin to
be updated is aligned with one of its neighbours, chosen at random. Therefore

p(h) = 1

2

(
1 +

h

4

)
(9)

i.e.

p1 = 3
4 p2 = 1 or t1 = 1

2 t2 = 1. (10)

This definition corresponds to a model with no bulk noise (p2 = 1, or T2 = 0). The noisy
voter model is defined as a simple generalization of (9). The spin to be updated is now aligned
with one of its neighbours, chosen at random, with a probabilityγ [3, 6]. In other terms

p(h) = 1

2

(
1 +

γ

4
h
)
. (11)

Hence

p1 = 1

2

(
1 +

γ

2

)
p2 = 1

2(1 +γ ). (12)

This corresponds to the line

p2 = 2p1− 1
2 or t1 = t2

1 + t22
(13)
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Figure 1. Phase diagram. Broken lines correspond to the noisy voter model (V), the Ising model
(I) and the majority vote model (M). The low-temperature phase is located in the upper right corner,
above the transition line (full line).

whenγ varies from 0 to 1. One may also extend the definition (11) to−1 6 γ 6 0, by
allowing negative values of the coordinatest1 andt2, or equivalently lettingp1 andp2 be less
than 1

2. The model thus defined is known as the antivoter model [3].
Finally, for the majority vote model [3, 18], spins are aligned with the local field (i.e. with

the majority of neighbours) with some given probability. More precisely, ifh 6= 0

p(h) = 1
2(1 + δ signh) (06 δ 6 1) (14)

andp(0) = 1
2. Hence

p1 = p2 = 1
2(1 + δ) (15)

therefore the model corresponds to the line

p1 = p2 or t1 = 2t2
1 + t22

(16)

i.e.T2 = 2T1, whenδ varies from 0 to 1.
Figure 1 shows, in the(t1, t2) or (p1, p2) planes, the lines corresponding to the Ising,

voter and majority vote models. Three other lines deserve attention. Firstly, thep2 = 1 line
corresponds to models with no bulk noise (T2 = 0), hence the dynamics is only driven by
interfacial noise, defined above. Secondly, thep1 = 1 line corresponds to models with no
interfacial noise (T1 = 0), hence the dynamics is only driven by bulk noise. (In both cases
the effect due to the curvature of the interfaces is always present, as mentioned above.) For
these last models, the local spin aligns in the direction of the majority of its neighbours with
probability one, if the local fieldh = 2, i.e. if there is no consensus amongst the neighbours. If
there is consensus amongst them, i.e. ifh = 4, the local spin aligns with its neighbours with a
probabilityp2 < 1. Finally the transition line between the low- and high-temperature regions
is discussed below.

See reference [16] for similar definitions. The introduction of the temperaturesT1 andT2,
together with their interpretations as given above, is original to this work. A dual description of
the dynamics of the models in terms of reaction–diffusion processes is given in the appendix.
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Figure 2. Snapshots of the evolution for the Ising model at zero temperature (p1 = p2 = 1), for
t = 8, 64 and 512.

3. Phase ordering and the critical line

In this section we investigate the dynamics of phase ordering for the two-parameter class
of models presented here. Forp1 andp2 given, we let the system evolve, starting from a
random initial configuration. This study demonstrates the existence of a critical line, in the
(p1, p2) or (t1, t2) planes, between a low-temperature region where clusters (or domains) grow
indefinitely, and a high-temperature region where one only observes fluctuations at a finite
scale. It also provides a visual illustration of the role of the two temperaturesT1 andT2,
respectively associated to interfacial and to bulk noise.

Two methods for updating the spins are at our disposal. With sequential updating, time is
continuous and each spin evolves independently of others, at times chosen randomly according
to a Poissonian law. The normalization is chosen such that each spin evolves once in a mean
unit of time. Therefore, in a simulation of a lattice ofN spins, one has to choose randomly a
spin and update it,N times per time unit.

Instead of using sequential updating, we adopt a slightly different procedure for our
simulations, namely a parallel updating of the spins. The lattice is divided into two odd and even
sublattices, and, during a unit of time, the two sublattices are visited in turn, with a systematic
update of their spins. This division is needed in order to avoid undesirable effects due to the
simultaneous update of neighbouring sites. This process allows a functional parallelization on
the computer. Spins are represented as single bits, and it is possible to arrange the spins into
computer words, such that all spins of a word can be updated simultaneously by global logical
operations. This method is numerically efficient, allowing long simulations on large lattices.

In figures 2–8, we have selected snapshots of the same fragment 256×256 of a 512×512
lattice with periodic boundary conditions, for three timest = 8, 64 and 512, and seven different
points in the parameter space of the models.

Figures 2 and 3 depict, as reference views, the well known appearance of domain growth
for the Ising model, respectively at zero temperature, and atT = 0.97Tc. The Ising critical
point corresponds tot1 = t2 = 1/

√
2. ForT < Tc clusters grow as

√
t , while atTc, they only

grow ast1/z, where the dynamical exponentz ≈ 2.17. In the high-temperature phase, clusters
grow until their sizes reach the equilibrium correlation length.

This distinction between a low-temperature and a high-temperature phase can be
generalized to all models of the two-dimensional parameter plane. The transition line between
the low- and high-temperature regions, depicted in figure 1, was located by a systematic
investigation of the parameter plane, using the following method (see [17] for details). We
measured the distribution of the local mean magnetization at a given siteMt = t−1

∫ t
0 σ(t

′) dt ′
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Figure 3. Snapshots of the evolution for the Ising model atT = 0.97Tc (p1 = 0.8602,
p2 = 0.9743), fort = 8, 64 and 512.

Figure 4. Snapshots of the evolution for a model close to the voter model, in the low-temperature
region (p1 = 0.76,p2 = 1), for t = 8, 64 and 512.

Figure 5. Snapshots of the evolution for the voter model (p1 = 0.75,p2 = 1), for t = 8, 64 and
512.

for large enough time (e.g.t > 1000). When crossing the critical point, the shape of the
distribution changes from a broad profile with two maxima to a narrower one, with one
maximum.

For instance, figures 4–6 correspond to an exploration of the linep2 = 1, with p1

decreasing away from the zero-temperature Ising case (p1 = p2 = 1). On this line no
thermal fluctuations occur inside the clusters, so their interiors remain forever uniformly black
or white. Whenp1 decreases, the boundaries between domains take progressively a fractal
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Figure 6. Snapshots of the evolution for a model close to the voter model, in the high-temperature
region (p1 = 0.72,p2 = 1), for t = 8, 64 and 512.

Figure 7. Snapshots of the evolution for the majority vote model (p1 = p2 = 0.93), for t = 8, 64
and 512.

Figure 8. Snapshots of the evolution for the model with (p1 = 1, p2 = 0.84), for t = 8, 64 and
512.

appearance, in accord with the fact that interfacial noise increases along the line. This is
particularly visible on figure 4, which illustrates the case of a model close to the voter model,
in the low temperature region (p1 = 0.76,p2 = 1), and on figure 5, for the voter model itself
(p1 = 0.75,p2 = 1). Again one observes growing clusters, with a characteristic size behaving
as
√
t . A similar behaviour is observed for all models such that 0.756 p1 6 1, p2 = 1.
Figure 6 illustrates the case of a model located in the high-temperature region, near the

voter model (p1 = 0.72,p2 = 1). In parallel to what is observed for the Ising case aboveTc,
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Figure 9. Log–log plot of the persistence probabilityR(t) on the linep2 = 1, for p1 =
1, 0.9, 0.8, 0.77, 0.75, from top to bottom. The inset depicts lnR(t) for the voter model (p1 = 0.75)
against ln2 t . The system size isL = 3072.

clusters grow until their sizes reach the correlation length. The transition to the low-temperature
region along the linep2 = 1 is therefore only induced by interfacial noise.

We also display in figure 7 the evolution observed for the majority vote model with
(p1 = p2 = 0.93). The transition takes place forp1 = p2 ≈ 0.923, in agreement with the
value (0.925) given in [18].

Finally exploring the linep1 = 1, we observe a transition between the low- and high-
temperature regimes forp2 ≈ 0.849, in agreement with the value (0.854) given in [16].
Figure 8 depicts snapshots of the evolution for the model with (p1 = 1,p2 = 0.84). See [16]
for a determination of the critical line by a finite-size scaling analysis in the stationary state.

4. Persistence

In this section we address the question of persistence in the low-temperature region of the
(p1, p2) parameter plane depicted in figure 1. We first present numerical measurements of the
fractionR(t) of spins which never flipped up to timet , for models with no bulk noise, i.e. for
T2 = 0 orp2 = 1. The case of persistence at finite temperature, i.e. in the present context for
T2 > 0, will be discussed in section 4.2.

4.1. Thep2 = 1 line

We measured persistence in the low-temperature region (p1 > 0.75) of the linep2 = 1.
Figure 9 depicts the results of simulations for times up to 5000, on a lattice 3072× 3072. The
fractionR(t) of spins which never flipped up to timet behaves, in the early stage, as

lnR(t) ∼ −A ln2 t +B ln t +C + · · · (17)

then one observes a crossover toward the power law

R(t) ∼ t−θ (18)
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with an exponentθ ≈ 0.22 which seems independent ofp1. This behaviour therefore
interpolates between the two ‘pure’ cases, namely the zero-temperature Ising model (p1 =
p2 = 1) where (18) is observed with the same exponentθ ≈ 0.22 [7–9], and the voter model,
for which (17) holds [10, 11].

The origin of these two ‘pure’ behaviours can be simply traced back to the two driving
forces of the dynamics in absence of bulk noise, i.e. respectively to interfacial noise for (17),
and to the curvature of interfaces for (18). Indeed, consider first the case of the Ising model
at zero temperature (T1 = T2 = 0), for which the dynamics is only driven by the curvature of
interfaces. As a consequence, the only flipping mechanism for a spin is the slow sweeping mode
of the interfaces, hence persistent spins deeply buried inside large clusters disappear slowly,
according to (18). Consider now the case of the voter model (p1 = 0.75, p2 = 1), starting
from a configuration with a planar interface separating two regions of opposite spins. This
interface thickens gradually, because of interfacial noise, taking ever more a fractal appearance.
At large times it becomes difficult to speak any longer of an interface, the thickness of which
should be considered as infinite. The decay of persistent spins is much faster and follows (17).

This analysis allows the following interpretation of the results given above for persistence
of a generic model along thep2 = 1 line, andp1 > 0.75. In the early stages of phase ordering,
domains begin to grow and develop their interfaces. As a consequence, the fraction of persistent
spins in the interface region is expected to decay more rapidly than if they were deep inside
a cluster, following (17) since this is the dominant process. The duration of this early stage
is related to the thickness of the interfaces, which vanishes for the Ising model where smooth
interfaces are observed, and diverges for the voter model where a fractal appearance of the
interfaces is observed. After this first stage, the fraction of persistent spins will decay according
to (18). Therefore, along the linep2 = 1 (T2 = 0), the resulting law for the decay ofR(t) will
be a weighted sum of (17) and (18). The amplitude obtained by fitting the asymptotic algebraic
tail (18) is naturally interpreted as the fraction of persistent spins which are deep inside the
clusters. This fraction vanishes when one approaches the voter model, with an apparent power
law (p1 − 0.75)α, with α ≈ 2.3. This result is consistent with the fact that the voter model is
critical, according to the criterion of section 3.

Note a simple consequence of the analysis above, namely that, for any model such that
p1 > 0.75, the prescription of suppressing the bulk noise by forbidding flips of a spinσ = 1
(resp.σ = −1) surrounded by four spins with the same value 1 (resp.−1), leads to an algebraic
decay of the persistence probability, since this corresponds to a projection of the model onto
the linep2 = 1.

4.2. Persistence at finite temperature

For a two-dimensional Ising system in presence of thermal noise (i.e. in the present context,
for p2 < 1), the number of spins which did not flip up to timet decays exponentially. A more
satisfactory quantity to investigate is the fractionR(t) of space which remained in the same
phase, coming back to the original definition of persistence [19, 20], where ‘remaining in the
same phase’ means remaining ‘dry’, i.e. unswept by an interface. The prescription given in
[12] to determine whether a given spin ‘remained in the same phase’, leads again to algebraic
decay ofR(t), the fraction of ‘persistent’ spins, whenT < Tc. Further works [13–15] seem
to indicate that the persistence exponentθ for the two-dimensional Ising model is constant in
the low-temperature phase, and approximately equal to 0.22.

Coming back to the class of models under investigation, one may therefore wonder what
is the value of the persistence exponent outside the Ising line, in the low-temperature region.
Here we use the definition of [12], adopting the extensions given in [14], in order to measure
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Figure 10. Log–log plot of the persistence probabilityR(t). Full lines, from top to bottom:
(p1 = 1, p2 = 1): Ising at T = 0; (p1 = 0.95, p2 = 0.997): Ising atT = 0.6Tc;
(p1 = 1, p2 = 0.95); (p1 = 0.95, p2 = 0.95): majority vote; (p1 = 0.9, p2 = 1);
(p1 = 0.8, p2 = 0.988): Ising atT = 0.8Tc; (p1 = 1, p2 = 0.9); (p1 = 0.876, p2 = 0.980):
Ising atT = 0.9Tc; broken lines, from top to bottom: (p1 = 0.92, p2 = 0.92): majority vote;
(p1 = 0.854, p2 = 0.971): Ising atT = Tc; (p1 = 1, p2 = 0.84); (p1 = 0.75, p2 = 1): voter.
The system size isL = 1536.

persistence in the low-temperature region of the parameter plane. We consider three copies of
the system, A, B and C, submitted to the same noise (p1, p2). The initial condition for A is
random, while it is ordered for B (σB

i (0) = +1), and C (σC
i (0) = −1) wherei = 1, . . . , N

labels the sites. A spinσA
i of copy A is said to be persistent up to timet , if it experienced

thermal fluctuations only, i.e. if its history was either that ofσB
i or that ofσC

i . Hence

R(t) = P(σA
i (t
′) = σB

i (t
′) or σA

i (t
′) = σC

i (t
′), ∀t ′ 6 t) (19)

measures the fraction of persistent spins in one of the two phases± [14, 12]. We also
checked, using the determination of the interfaces proposed in [14], the equivalence between
the definition ofR(t) given by (19) and that obtained by considering a spin as persistent if it
was not swept by an interface.

Figure 10 depicts the results. The exponentθ seems to be constant, with a value≈0.22, for
all models on the low temperature side of the critical line that we considered. It is nevertheless
hard to conclude, on the basis of numerical measurements. The decrease of persistence at
criticality is much faster. A possible explanation is that, as for the voter model (see 4.1), the
thickness of interfaces diverges, leading to a behaviour similar to (17).

5. Conclusion

The aim of this work was to initiate the study of phase ordering and persistence for a class of
models interpolating between the voter and Ising models, introduced previously in [16].

In our opinion, the introduction of two temperaturesT1 andT2, respectively associated to
interfacial and to bulk noise, gives a useful interpretation of the phenomena observed when
varying continuously the parameters defining this class of models. The present analysis seems
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to indicate that the persistence exponentθ ≈ 0.22 is universal for all models in the low-
temperature phase. The situation on the critical line is less clear, and possibly related to the
divergence of the width of the interfaces between domains at criticality. In this respect it
would be desirable to find a way of computing the equation of the critical line in the(p1, p2)

parameter plane. A more ambitious goal would be to computeθ for the two-dimensional
zero temperature Ising model, in the dual reaction–diffusion framework given in the appendix,
using the field theoretical methods of [11, 21–23]. Let us finally mention extensions tod > 2
or to the Potts model as possible further studies. We hope to address some of those points in
the future.
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Appendix. The dual approach

In this appendix we show that the dynamics of the class of models under study possesses a
dual description in terms of reaction–diffusion processes for a set of random walkers moving
backward in time. This description, beyond its intuitive value, is the starting point of an
analysis of the temporal evolution of the system by means of diagrammatic expansions [24].

We first review the case of the voter model [3, 5, 6, 25]. Let us define the random variable
τ = (1 +σ)/2= 1, 0, hereafter also called spin. The value of the spinτ (t)x at timet and sitex
can be traced back to the value of its ancestorτ (0)y at timet = 0, located on sitey. The idea
is to follow the line of continuity of the value of the spin, backward in time, from (x, t) to
(y, 0). Indeed, one first follows the line of constantτ backward in time, from(x, t) until the
last updating of sitex is met. At this time, the spin had chosen the value of a neighbouring
site. Moving to this site one again follows the line of constantτ backward in time. Proceeding
until t = 0, one thus performs a random walk, backward in time, from (x, t) to (y, 0) such that
τ (t)x = τ (0)y .

It is easy to see that all spins at timet possess an ancestor at timet = 0, but that
conversely not all sites at timet = 0 are ancestors of spins at timet . Indeed, starting from
n spinsτ (t)1 , . . . , τ (t)n , located on sitesx1, . . . , xn, at timet , the same reasoning leads to the
consideration ofn random walkers starting from sitesx1, . . . , xn, at timet , and going backward
in time. When two such walkers meet, they coalesce because the corresponding sites have a
common ancestor from which they inherit the common value of their spin.

Hence the determination of the values of thesen spins is equivalent, for the voter model, to
knowing the history ofn independent coalescing random walkers, starting from sitesx1, . . . , xn,
and moving backward in time. An example is displayed in figure A1. The final stage, at time
t = 0, containsk walkers (16 k 6 n) at sitesy1, . . . , yk. Sinceτ (t)x1

. . . τ (t)xn = τ (0)y1
. . . τ (0)yk ,

we conclude that the sum of the probabilities of all these processes starting from then points
x1, . . . , xn gives the correlation function〈τ (t)x1

. . . τ (t)xn 〉. One can easily generalize the reasoning
to the case of spins on different sitesx1, . . . , xn, at different timest1, . . . , tn.

For the voter model, the definition (9) can be rewritten as

P(τx = 1) = 1
4(τy1 + τy2 + τy3 + τy4). (A1)

This means that for the dual two-dimensional random walk the elementary process consisting
of a jump from sitex to one of its neighbouring sitesy has probability1

4τy . Similarly (11)
leads to

P(τx = 1) = 1− p2 + (p2 − p1)(τy1 + τy2 + τy3 + τy4) (A2)
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Figure A1. An example of coalescing random walks moving backward in time, occurring in the
voter model. The drawing is done in one dimension, for simplicity.

the interpretation of which is given below. The generalization to a generic model (p1, p2) is
now straightforward. By its very definition one has

P(τx = 1) = p2τy1τy2τy3τy4 + p1[τy1τy2τy3(1− τy4) + 3 perm. terms]

+1
2[τy1τy2(1− τy3)(1− τy4) + 5 perm. terms]

+(1− p1)[τy1(1− τy2)(1− τy3)(1− τy4) + 3 perm. terms]

+(1− p2)(1− τy1)(1− τy2)(1− τy3)(1− τy4). (A3)

This expression can be rewritten as

P(τx = 1) = 1− p2 + (p2 − p1)(τy1 + τy2 + τy3 + τy4)

+
(
2p1− p2 − 1

2

)
(τy1τy2 + τy1τy3 + τy1τy4 + τy2τy3 + τy2τy4 + τy3τy4)

− (2p1− p2 − 1
2

)
(τy1τy2τy3 + τy1τy2τy4 + τy1τy3τy4 + τy2τy3τy4). (A4)

Equation (A4) is the generalization of (A2) and can be expressed as the sum of four elementary
processes, namely:

• the random walker disappears (with a weight 1− p2),
• the random walker makes a step to a neighbouring site (with a weightp2 − p1),
• the random walker splits into two walkers located on different neighbouring sites (with a

weight 2p1− p2 − 1
2),

• the random walker splits into three walkers located on different neighbouring sites (with
a weight−2p1 + p2 + 1

2).

Hence the coalescing random walks considered above for the voter model have now also
the possibility of annihilating, or of branching into two or three new walks. Note that the
weightp2−p1 vanishes on the line of the majority vote model, while the weight 2p1−p2− 1

2
vanishes on the line of the noisy voter model.

Let us underline the fact that the weights corresponding to these elementary processes can
be negative. Therefore these drawings should be seen as diagrams, and not as the actual paths
of real random walkers. They may indeed be used for actual diagrammatic computations. For
example, near the voter model, one can perform a double series expansion of the correlation
functions in the ‘coupling constants’ 1−p2 and 2p1−p2− 1

2, in order to compute the rate of
the exponential decay of persistence, in good agreement with numerical measurements [24].
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